NEXTE NUS-Tsinghua Centre for Extreme Search

A Joint Research Collaboration Between NUS & Tsinghua University

Outer Product-based
Neural Collaborative Filtering

Xiangnan He?!, Xiaoyu Du?, Xiang Wang?,
Feng Tian3, Jinhui Tang* and Tat-Seng Chua®

1: National University of Singapore
2: Chengdu University of Information Technology
3: Northeast Petroleum University

4: Nanjing University of Science and Technology

© Copyright NExT++. All Right Reserved.



Ne*T - Matrix Factorization (MF)

» A prevalent model for collaborative filtering

— Represent a user (or an item) as a vector of
latent factors (also termed as embedding)
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Ne*T - Matrix Factorization (MF)

» A prevalent model for collaborative filtering

— Represent a user (or an item) as a vector of Prediiction Vi
latent factors (also termed as embedding)
— Estimate an interaction as the inner product interaction f(pu, q’

between the user embedding and item
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Ne*T - Matrix Factorization (MF)

» A prevalent model for collaborative filtering

— Represent a user (or an item) as a vector of Prediction Yu
latent factors (also termed as embedding)

— Estimate an interaction as the inner product Interaction f(p q)
between the user embedding and item Function us i

embedding V N

» Many extensions on MF Embedding [ User Embedding tom Embedding
_ Layer S 7 Pk \s.:==:7 Q NyK
— Model perspective: NeuMF [He et al, WWW’17], SIMRRALE
. . . Input Layer D Il BO . 01110
Factorization Machine etc. (Sparse) User ) po—

— Learning perspective: BPR, Adversarial
Personalized Ranking [He et al, SIGIR’18]
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Be*T -+ Interaction Function in MF

» MF uses Inner Product as the interaction function (Pudins)
» The implicit assumption in Inner Product: f@,.q4) =pug; = | "™
* The embedding dimensions are independent with each other b ‘qk }

However, the implicit assumption is impractical.
[0 The embedding dimensions could be interpreted as certain properties of items
[Zhang et al., SIGIR’14], which are not necessarily to be independent

Recent DNN-based models either use element-wise product or concatenation.

[ E.g., NeuMF [He et al, WWW’17], NNCF [Bai et al, CIKM’17], JRL [Zhang et al, CIKM’17],
Autoencoder-based CF Models [Wu et al, WSDM’16]

[ Still, the relations among embedding dimensions are not explicitly modeled.
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Be*T - Research Questions

* How to model the relations between embedding dimensions?

* Next:our proposed method:
1. Outer product on user&item embedding for pairwise interaction modeling
2. CNN on the outer product matrix to extract and reweight prediction signals.
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Outer Product-basead

BeXT Neural Collaborative Filtering (ONCF)

Outer-product explicitly models the pairwise § < Tanng  pop
) . : : Prediction N e

relations between embedding dimensions: D . ANy —

- Get a 2D matrix, named as interaction map: Hidden ... Tewmveres e . . ..
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Ne*T -+ ONCF-MLP

_ . _ ™ < Training BPR
Above the interaction map are hidden Prediction Yu
layers, which aim to extract useful P U A ST —

. . . Interaction Features
signal from the 2D interaction map.

Interaction

A straightforward solution is to use MLP, Map -

however it results in too many parameters: /

- Interaction map E has KX K neurons (K is Py ®;\
embeddings size usually hundreds) Embedding |  User Embedding | [ Item Embedding

- Require large memories to store the model Layer §33’=~7.._P|\/lxr7 \‘7 Q NxK

- Require large training data to learn the InputLayer [0 |1 [0 ]..| o|1]o0

model well (Sparse) User (u) | ltem (i)

© Copyright NExT++. All Right Reserved.



Be*T -+ Convolutional NCF (ConvNCF)

» ConvNCF uses locally connected CNN as hidden layers in ONCF:

» CNN has much fewer parameters than MLP
» Hierarchical tower structure: higher layer integrates more information from larger area.
» Final prediction summarizes all information from interaction map.

Layer 1 Layer 2 Layer 3 Layer 4 Layer5 Layer6 Predictions
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= 2 Fully Connected Layers: > 10M parameters
= 6 Convolutional Layers: 20K parameters, but .

achieve better performance! :
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Me¥T - Experimental Settings

» Datasets
— Yelp: 25,815 users, 25,677 items, and 730,791 interactions.
— Gowalla: 54,156 users, 52,400 items, and 1,249,703 interactions.

> Protocols
— Leave-one-out: holdout the latest interaction of each user as the test
— Pair 1 testing instance with 999 negative instances

— Top-K evaluation: ranking 1 positive vs. 999 negatives.
— Ranking lists are evaluated by Hit Ratio and NDCG (@10).

> Loss Function

— Bayesian Personalized Ranking 3:*—'
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Me*T+ Baselines

» MF-BPR [Rendle et al., UAI'09]
— Learning MF with a pair-wise classification loss.

» MLP [He et al., WWW’17]
— 3-layer multi-layer perceptron above user and item embeddings.

> JRL [Zhang et al., CIKM’17]

— Multi-layer perceptron above the element-wise product of embeddings.
» NeuMF [He et al., WWW’17]
— A neural network combining hidden layer of MF and MLP.

- ... -
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Neg*T

Performance Comparison

Gowalla Yelp Average Improvement of
HR@10 | NDCG@10 || HR@10 | NDCG@10 | ConvNCF over Baselines
MF-BPR 0.7480 0.5214 0.2817 0.1447 +9.5%
MLP 0.7590 0.5202 0.2831 0.1446 +9.1%
JRL 0.7747 0.5615 0.2922 0.1519 +4.3%
NeuMF 0.7793 0.5660 0.2958 0.1536 +3.3%
ConvNCF | 0.7936" 0.5826" 0.3086" 0.1600° -

* indicates that the improvements over all other methods are statistically significant for p < 0.05.

Overall Performance: ConvNCF > NeuMF|He et al., 2017] > JRL[Zhang et al., 2017]

» Usefulness of modeling the relations of embedding dimensions
» Training MLP well is practically difficult.
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Ne*T Efficacy of Outer Product

Training process of neural models that apply different operations above the embedding layer:
- ConvNCF: outer product; GMF: element-wise product; MLP: concatenation; JRL: element-wise product
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Outer product is a simple but effective merge of user&item embeddings.
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Ne*T - Efficacy of CNN

NDCG@10 of using different hidden layers for ONCF:
e ConvNCF uses a 6-layer CNN.
*  ONCF-mlp uses a 3-layer MLP above the interaction map.
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1. ConvNCF outperforms ONCF-mlp.
2. ConvNCF is more stable than ONCF-mlp.
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Me*T -+ Conclusion & Future Work

Summary of contributions:

» A new neural framework for CF --- ONCF, which explicitly captures pairwise
correlations between embedding dimensions with outer product

» A new model of ONCF framework --- ConvNCF, which uses CNN as hidden layers .
» Extensive experiments show effectives of ONCF framework and ConvNCF method.

Future work:
» We will explore more advanced CNN models to further explore the potentials of
our ONCF framework.

» We will extend ONCF to content-based recommendation scenarios, e.g., items
have image and textual content.

- ... -
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THANK YOU!

Codes: hitps://github.com/duxy-me/ConvNCF

For questions: email to Dr. He Xiangnan
xiangnanhe@gmail.com
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